在无损检测领域,有一对兄弟方案——工业CT检测和X射线检测,这两种检测方式都是利用了X射线来探测物体的内部,那么,X射线是怎么产生的呢?从科学原理上说:X射线是由于原子中的电子在能量相差悬殊的两个能级之间的跃迁而产生的粒子流,是波长介于紫外线和γ射线之间的电磁辐射。由德国物理学家W.K.伦琴于1895年发现,故又称伦琴射线。伦琴射线X波长很短,约介于0.01~100埃之间,具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应。于是,工程师们利用X射线这种特性,开发了各种X射线的探测设备。20世纪中叶开始,随着计算机技术的发展,X射线方案有了新的发展方向即——CT方案,所谓CT即三维X射线扫描,是以非破坏性X射线透视技术,将待测物体做360°自转,通过单一轴面的射线穿透被测物体,根据被测物体各部分对射线的吸收与透射率不同,收集每个角度的穿透图像,之后利用电脑运算重构出待测物
2020-12-17
工业CT发展到现在,已经经历了五代,不过,不管哪一代工业CT,工业CT的基本原理都是一样的。工业 CT 系统通常由射线源、机械扫描系统与自动控制系统、探测器系统及数据采集系统、计算机系统、辅助系统等组成 。其中, 最核心的原理是:计算机控制射线源发出射线束,数控扫描平台承载被测物体,可以在计算机控制下移动或旋转,平板探测器则负责采集扫描数据;屏蔽设施确保射线不外泄以及扫描过程的安全;最后,计算机通过采集到的投影数据重建工业 CT 切片图像,并对图像中存在的缺陷进行分类。下面,我们就工业CT基本原理涉及到的几个组件做一个介绍:一、射线源工业CT最常用的射线源是X射线机和直线加速器,统称电子辐射发生器。X射线机和直线加速器产生X射线的机理大体相同,都是利用高速电子轰击靶物质的过程中,电子突然减速引起的所谓轫致辐射除轫致辐射以外,高速电子和靶物质的内层电子作用时还可能发生一些特征辐射。特征辐射的能量与靶材料原子序数有关,大致在数千电子伏到数十千电子伏的范围,市售X射线机的峰值射
2020-10-19
无损检测的历史远比我们想象的漫长,据传古罗马人曾用面粉和油脂来寻找大理石中的裂纹,而几个世纪后的铁匠们在锤炼金属成型时,则根据其发出的声波来分辨不同的金属圆环。然而,最早将无损检测技术应用于实际生产的是1868年英国的Saxby利用指南针的磁性来检测枪管里的裂缝。进入现代社会后,无损检测和科技结合更加紧密。现代无损检测技术可以简单地分为两类:表面无损检测与近表面无损检测。表面无损检测技术是一项用于检测产品表面缺陷的技术,如荧光渗透检测,它能有效定位存在于表面中的裂纹或其它类型的缺陷。近表面无损检测技术则用于检测表面之下的缺陷。包括超声检测、激光检测和射线检测等方法。荧光渗透检测通常做法是首先在工件表面涂上一层紫外光照射发光的涂料,接着对表面进行清洗,这样表面上任何多余的荧光剂都会被去除,而渗进表面缺陷里的则会被保存下来。然后再将工件放在紫外光下进行检测,观察是否有荧光剂发光。如果有,则借此可以判断工件存在损伤。而超声检测则不同,它属于一种近表面技术得检测方案,它的工作方式
2020-10-13
3D打印技术是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术,与传统加工制造业不同,3D打印技术实现了增量制造,这种数字化制造模式不需要复杂的工艺、不需要庞大的机床和众多的人力,可以直接从计算机图形数据中便可生成任何形状的零件。从而使得设计不再受加工工艺的局限。为了改进3D打印增材制造工艺,判别构件加工质量是否满足设计要求,对于复杂精密的镂空、内含等增材制造构件,无损检测是评价其加工尺寸精度和缺陷情况的必经途径。因此,增材制造构件的质量检测与评定问题也成为目前无损检测领域的研究热点,并涌现出如等空间分辨声谱等新的无损检测方法。X射线CT技术能在对检测物体无损伤条件下,以二维断层图像或三维立体图像的形式,清晰、准确、直观地展示被检测物体的内部结构、组成、材质及缺损状况,被誉为内部结构最佳无损检测和无损评价技术。对于复杂构件内部结构、轮廓尺寸及缺陷的定量化检测,研究表明,工业CT是一种适合的方法。在增材制造构件检测方面,目前没有
2020-09-27
工业CT与DR成像系统主要由x射线源、平板探测器(Flat Panel Detector,FPD)、工控计算机等组成。x射线源发出x射线光子,穿透工件后被平板探测器接收并转换为电信号,再由A/D转换电路将其转换成数字化信息,将数字化信息传输到计算中去,经过相关的处理形成并显示数字图像。在工程检测中,射线检测是使用最久的无损检测手段,在工业生产的各个方面运用都非常广泛。射线胶片检测是吧射线胶片作为检测记录器进行记录,也是应用最早,当前使用范围最广泛的一种射线检测技术。然而胶片照相没法达到实时成像,并且胶片照相对胶片质量的要求较高,这也导致了其成本较大。并且胶片存储需要严格的温度、湿度控制,对环境要求很高,操作起来很不方便,不利于方便管理。最近几年来,计算机层析技术、CCD技术、线扫描成像技术、平板探测器技术发展速度较快。这些技术都具备实时成像、实时检测以及实时评估的优点,并且数字图像也能够在网络上被更多的人所看到及采用。射线数字成像技术首先应用到医学领域中,早先发展速度较慢
2020-09-22
所谓复合材料,顾名思义,它是由两种或两种以上具有不同性质、不同形态的材料经过复合工艺制备而成的综合性能优于原组成材料的新型材料。其具有重量轻、强度高等优点,正是因为复合材料具有很多普通单一材料没有的优点,所以他的应用也越来越广泛,例如:航空航天、电子电气、汽车等领域,在军用及民用方面都发挥着重要的作用。工业CT图像能够显示出复合材料的组分及密 度特性 ,适合于复合材料制 品中多种类型缺陷的检 测。准确的缺陷检测 ,不仅提高了复合材料的使用可靠性 ,而且为复合材料制 品的设计 、改进提供了更多选择。将工业 CT技术和制造工艺相结合 ,能够及时发现缺陷 ,有利于降低生产成本 ,改进生产工艺。1、工业CT检测夹杂缺陷复合材料制品中夹杂缺陷的产生原因,主要是由原材料纤维预浸料、树脂或溶剂中自带的杂质,固化过程中模具内的脱落物,工人在操作时不小心带进的杂质等。夹杂缺陷Ct图像中灰度特征发亮的部位即为夹杂缺陷,夹杂缺陷多为,斑点状,块状或条形,该夹杂密度比复合材料制成的密度大,但是由
2020-09-11
工业 CT 技术不受被检测物体材料、形状、表面状况等限制,能够给出被检测物体二维、三维图像,成像 直观,分辨率高。因此,工业 CT 被广泛应用在我国航空、航天、兵器、汽车制造、铁路、考古等领域,应用范围涵 盖缺陷检测、材料密度表征、尺寸测量、装配结构分析、逆向工程等。随着工业 CT 技术在高端装备制造业 中的应用和发展,精密复杂零部件的内部缺陷检测需求日益增加,对缺陷的检出尺度及测量精度要求极高。目前国内外正积极开展工业CT三维精密测量技术研究。在工业CT尺寸测量应用研究方面,Kiekens等对影响工业CT系统测量值误差进行了研究,Van Bael等将工业CT应用于多孔结构几何形状控制,计算孔结构尺寸、壁厚、结构体积等几何信息,完成产品几何形状的控制。在尺寸测量精度方面,GE公司通过红宝石球进行验证实验,并采用散射线补偿的方法提高测量精度,最高可达(4+L/100) μm。在测量标准方面,德国《VDI/VDE 2630工业CT尺寸测量》系列标准,包含了原理与术语、测量影响
2020-09-06
要问工业CT或X射线成像中最重要的参数是什么,管电压肯定是其中之一。目前,考虑到管电压过高会降低射线检测的主因对比度,国内外相关标准均对射线数字成像检测管电压的选用给出了相应的推荐值。国内也开始有一些相关研究,有专家认为基于传统胶片照相工艺经验而来的管电压推荐值并不适用于射线数字成像检测,需根据特定的检测系统开展相关工艺试验确定X射线管电压上限值,且此上限值远高于相关标准的推荐值。与传统胶片照相相同,X射线数字成像检测最重要的工艺参数便是曝光参数,这其中最为关键的指标之一便是X射线管电压。对比不同管电压下图像质量与试板裂纹识别度,提出在合理范围内选用较高的管电压,可以提高数字图像归一化信噪比,补偿由于管电压提高引起的图像对比灵敏度的下降,从而提高人眼缺陷识别度。相关标准均对管电压上限值进行了明确规定,随着X射线管电压的升高,衰减系数减小,对比度降低,固有不清晰度增大,其结果是检测灵敏度下降。在胶片照相中,灵敏度降低会明显降低缺陷识别率,且一般情况下管电压上限值是经大量工艺
2020-08-27
工业CT使用的X射线检测作为无损检测的主要方法之一,与其他方法相比具有直观、准确等优点。射线检测中垂直于射线透照方向的缺陷尺寸可精确测量,但平行于射线透照方向的缺陷尺寸无法直接测量得到,而未焊透、根部内凹等缺陷深度的测量又是实际应用中的常见问题。目前针对X射线数字图像灰度值(以下简称灰度值)的研究,主要着重于分析灰度值与管电压和被测物体厚度等因素的定性关系,灰度值与各因素简单描述为简单的正比或反比关系,而对于图像灰度值与被测物体厚度之间的关系,并没有给出明确的计算公式或对应关系。射线管电压的提高会造成射线有效能量的增加,而有效能量的增加会使射线波长变短,引起衰减系数下降。根据光电效应、原子物理学等理论,散射和吸收截面与衰减系数存在着换算关系,但在实际检测中线性衰减系数随着工件厚度变化而发生变化,而强滤波后的射线在X射线光谱中的分布应为从最大强度附近到最短波长的范围,入射能量随着管电压增大而增大,对应的平均衰减系数减小。被测材料的厚度增大,同样会使对应的平均衰减系数减小。射
2020-08-14